Câu 4.73 trang 148 sách bài tập Đại số và Giải tích 11 Nâng caoCho dãy số xác định bởi Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ \matrix{ a) Chứng minh rằng \({u_n} \ne - 4\) với mọi n. b) Gọi \(\left( {{v_n}} \right)\) là dãy số xác định bởi \({v_n} = {{{u_n} + 1} \over {{u_n} + 4}}.\) Chứng minh rằng \(\left( {{v_n}} \right)\) là một cấp số nhân. Từ đó tìm giới hạn của dãy \(\left( {{u_n}} \right)\). Giải a) Ta chứng minh bằng phương pháp quy nạp . Ta có \({u_1} = 1 \ne - 4.\) Giả sử \({u_n} \ne - 4\). Ta chứng minh \({u_{n + 1}} \ne - 4.\) Thật vậy, \({u_{n + 1}} = - 4 \Leftrightarrow {{{u_n} - 4} \over {{u_n} + 6}} = - 4\) \(\Leftrightarrow \left\{ \matrix{ \(\Leftrightarrow {u_n} = - 4.\) Điều này trái với với giả thiết quy nạp. b) \({v_{n + 1}} = {{{u_{n + 1}} + 1} \over {{u_{n + 1}} + 4}} = {{{{{u_n} - 4} \over {{u_n} + 6}} + 1} \over {{{{u_n} - 4} \over {{u_n} + 6}} + 4}} = {{2{u_n} + 2} \over {5{u_n} + 20}} = {2 \over 5}.{u_n+1\over u_n+4}= {2 \over 5}{v_n}\) với mọi n. Vậy dãy số \(\left( {{v_n}} \right)\) là một cấp số nhân với công bội \(q = {2 \over 5}.\) Đó là một cấp số nhân lùi vô hạn. Vì \({v_n} = {v_1}{\left( {{2 \over 5}} \right)^{n - 1}}\) với mọi n nên \(\lim {v_n} = 0.\) Từ đẳng thức trong b) suy ra \({u_n} = {{4{v_n} - 1} \over {1 - {v_n}}}.\) Do đó \(\lim {u_n} = - 1.\) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Ôn tập chương IV - Giới hạn - SBT Toán 11 Nâng cao
|