Câu 5.46 trang 186 sách bài tập Đại số và Giải tích 11 Nâng caoCho hàm số, viết phương trình tiếp tuyến của đồ thị hai hàm số đã cho tại giao điểm của chúng. Tính góc giữa hai tiếp tuyến kể trên. Cho hàm số \(y = f\left( x \right) = {1 \over {x\sqrt 2 }}\) và \(y = g\left( x \right) = {{{x^2}} \over {\sqrt 2 }}\) Viết phương trình tiếp tuyến của đồ thị hai hàm số đã cho tại giao điểm của chúng. Tính góc giữa hai tiếp tuyến kể trên. Giải Hoành độ giao điểm hai đồ thị của haio hàm số đã cho là \({1 \over {x\sqrt 2 }} = {{{x^2}} \over {\sqrt 2 }} \Leftrightarrow {x^3} = 1 \Leftrightarrow x = 1\) Tung độ giao điểm tương ứng là \(y = {1 \over {\sqrt 2 }}\) Ta có \( \bullet \) \(f'\left( x \right) = {{ - 1} \over {\sqrt 2 .{x^2}}},\) suy ra \(f'\left( 1 \right) = - {1 \over {\sqrt 2 }}\) Vậy phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại giao điểm là \(y = - {1 \over {\sqrt 2 }}\left( {x - 1} \right) + {1 \over {\sqrt 2 }}\,\,\,hay\,\,y = - {1 \over {\sqrt 2 }}\left( {x - 2} \right)\) \( \bullet \) \(g'\left( x \right) = x\sqrt 2 ,\,\,suy\,ra\,\,g'\left( 1 \right) = \sqrt 2 \) Vậy phương trình tiếp tuyến của đồ thị hàm số \(y = g\left( x \right)\) tại giao điểm là \(y = \sqrt 2 \left( {x - 1} \right) + {1 \over {\sqrt 2 }}\,\,hay\,\,y = \sqrt 2 x - {1 \over {\sqrt 2 }}\) Mặt khác \(f'\left( 1 \right).g'\left( 1 \right) = - {1 \over {\sqrt 2 }}.\sqrt 2 = - 1\) Nên hai tiếp tuyến của đò thị hàm số đã cho vuông góc với nhau, suy ra góc giữa hai tiếp tuyến đó bằng \({90^0}\). Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Ôn tập chương V - Đạo hàm
|
Một đoàn tàu hỏa rời ga, chuyển động nhanh dần đều
Chứng minh rằng tiếp tuyến tại điểm bất kì của đồ thị hàm số, cắt trục tung tại một điểm cách đều tiếp điểm và gốc tọa độ.