Câu 5.48 trang 186 sách bài tập Đại số và Giải tích 11 Nâng caoChứng minh a) Chứng minh rằng nếu \(P\left( x \right)\) là một đa thức bậc ba và \(\alpha \) là một số thực bất kì ta có \(P\left( {x + \alpha } \right) = P\left( \alpha \right) + xP'\left( \alpha \right) + {{{x^2}} \over 2}P"\left( \alpha \right)) \) \(+ {{{x^3}} \over 6}P'''\left( \alpha \right),\) \(\left( {\forall x \in R} \right)\) b) Xác định đa thức \(P\left( x \right)\) bậc ba biết \(P\left( 0 \right) = P'\left( 0 \right) = P"\left( 0 \right)=P'''\left( 0 \right)\,\, = 1\) Giải Ta viết đa thức bậc ba \(P\left( x \right)\) dưới dạng \(P\left( x \right) = {a_0}{x^3} + {a_1}{x^2} + {a_2}x + {a_3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{a_0} \ne 0} \right)\) Ta có \(\eqalign{& P'\left( x \right) = 3{a_0}{x^2} + 2{a_1}x + {a_2} \cr& P''\left( x \right) = 6{a_0}x + 2{a_1} \cr& P'''\left( x \right) = 6{a_0}. \cr} \) Vậy \(\eqalign{& {{{x^3}} \over 6}P'''\left( \alpha \right) + {{{x^2}} \over 2}P''\left( \alpha \right) + xP'\left( \alpha \right) + P\left( \alpha \right) \cr& = {a_0}{x^3} + \left( {3{a_0}\alpha + {a_1}} \right){x^2} + \left( {3{a_0}{\alpha ^2} + 2{a_1}\alpha + {a_2}} \right)x\cr& + {a_0}{\alpha ^3} + {a_1}{\alpha ^2} + {a_2}\alpha + {a_3}\,\,\,\,\,\,\left( 1 \right) \cr} \)
Mặt khác ta có \(\eqalign{& P\left( {x + \alpha } \right) = {a_0}{\left( {x + \alpha } \right)^3} + {a_1}{\left( {x + \alpha } \right)^2} \cr& \;\;\; + {a_2}\left( {x + \alpha } \right) + {a_3} \cr& = {a_0}\left( {{x^3} + 3\alpha {x^2} + 3{\alpha ^2}x + {\alpha ^3}} \right) \cr&\;\;\; + {a_1}\left( {{x^2} + 2\alpha x + {\alpha ^2}} \right) + {a_2}\left( {x + \alpha } \right) + {a_3} \cr& = {a_0}{x^3} + \left( {3{a_0}\alpha + {a_1}} \right){x^2} + \left( {3{a_0}{\alpha ^2} + 2{a_1}\alpha + {a_2}} \right)x \cr&\;\;\; + {a_0}{\alpha ^3} + {a_1}{\alpha ^2} + {a_2}\alpha + {a_3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \cr} \) So sánh (1) và (2) , suy ra điều phải chứng minh. b) Khi \(\alpha = 0,\) ta được \(P\left( x \right) = P\left( 0 \right) + xP'\left( 0 \right) + {{{x^2}} \over 2}P''\left( 0 \right) + {{{x^3}} \over 6}P'''\left( 0 \right).\) Vì \(P\left( 0 \right) = P'\left( 0 \right) = P''\left( 0 \right) = P'''\left( 0 \right) = 1\) Nên đa thức tìm là \(P\left( x \right) = 1 + x + {{{x^2}} \over 2} + {{{x^3}} \over 6}\) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Ôn tập chương V - Đạo hàm
|
Chứng minh rằng tiếp tuyến tại điểm bất kì của đồ thị hàm số, cắt trục tung tại một điểm cách đều tiếp điểm và gốc tọa độ.
Gọi (P) và (P’) lần lượt là đồ thị của hai hàm số a) Vẽ các đồ thị của hai hàm số đó trên cùng một hệ trục tọa độ. b) Viết phương trình của đường thẳng (d) là tiếp tuyến của (P) để tiếp điểm A đồng thời cũng là tiếp tuyến của (P’) tại tiếp điểm B (đường thẳng (d) nếu có, được gọi là tiếp tuyến chung của (P) và (P’).