Câu 5.48 trang 186 sách bài tập Đại số và Giải tích 11 Nâng caoChứng minh a) Chứng minh rằng nếu \(P\left( x \right)\) là một đa thức bậc ba và \(\alpha \) là một số thực bất kì ta có \(P\left( {x + \alpha } \right) = P\left( \alpha \right) + xP'\left( \alpha \right) + {{{x^2}} \over 2}P"\left( \alpha \right)) \) \(+ {{{x^3}} \over 6}P'''\left( \alpha \right),\) \(\left( {\forall x \in R} \right)\) b) Xác định đa thức \(P\left( x \right)\) bậc ba biết \(P\left( 0 \right) = P'\left( 0 \right) = P"\left( 0 \right)=P'''\left( 0 \right)\,\, = 1\) Giải Ta viết đa thức bậc ba \(P\left( x \right)\) dưới dạng \(P\left( x \right) = {a_0}{x^3} + {a_1}{x^2} + {a_2}x + {a_3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{a_0} \ne 0} \right)\) Ta có \(\eqalign{& P'\left( x \right) = 3{a_0}{x^2} + 2{a_1}x + {a_2} \cr& P''\left( x \right) = 6{a_0}x + 2{a_1} \cr& P'''\left( x \right) = 6{a_0}. \cr} \) Vậy \(\eqalign{& {{{x^3}} \over 6}P'''\left( \alpha \right) + {{{x^2}} \over 2}P''\left( \alpha \right) + xP'\left( \alpha \right) + P\left( \alpha \right) \cr& = {a_0}{x^3} + \left( {3{a_0}\alpha + {a_1}} \right){x^2} + \left( {3{a_0}{\alpha ^2} + 2{a_1}\alpha + {a_2}} \right)x\cr& + {a_0}{\alpha ^3} + {a_1}{\alpha ^2} + {a_2}\alpha + {a_3}\,\,\,\,\,\,\left( 1 \right) \cr} \)
Mặt khác ta có \(\eqalign{& P\left( {x + \alpha } \right) = {a_0}{\left( {x + \alpha } \right)^3} + {a_1}{\left( {x + \alpha } \right)^2} \cr& \;\;\; + {a_2}\left( {x + \alpha } \right) + {a_3} \cr& = {a_0}\left( {{x^3} + 3\alpha {x^2} + 3{\alpha ^2}x + {\alpha ^3}} \right) \cr&\;\;\; + {a_1}\left( {{x^2} + 2\alpha x + {\alpha ^2}} \right) + {a_2}\left( {x + \alpha } \right) + {a_3} \cr& = {a_0}{x^3} + \left( {3{a_0}\alpha + {a_1}} \right){x^2} + \left( {3{a_0}{\alpha ^2} + 2{a_1}\alpha + {a_2}} \right)x \cr&\;\;\; + {a_0}{\alpha ^3} + {a_1}{\alpha ^2} + {a_2}\alpha + {a_3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \cr} \) So sánh (1) và (2) , suy ra điều phải chứng minh. b) Khi \(\alpha = 0,\) ta được \(P\left( x \right) = P\left( 0 \right) + xP'\left( 0 \right) + {{{x^2}} \over 2}P''\left( 0 \right) + {{{x^3}} \over 6}P'''\left( 0 \right).\) Vì \(P\left( 0 \right) = P'\left( 0 \right) = P''\left( 0 \right) = P'''\left( 0 \right) = 1\) Nên đa thức tìm là \(P\left( x \right) = 1 + x + {{{x^2}} \over 2} + {{{x^3}} \over 6}\) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Ôn tập chương V - Đạo hàm
|
Chứng minh rằng tiếp tuyến tại điểm bất kì của đồ thị hàm số, cắt trục tung tại một điểm cách đều tiếp điểm và gốc tọa độ.
Gọi (P) và (P’) lần lượt là đồ thị của hai hàm số a) Vẽ các đồ thị của hai hàm số đó trên cùng một hệ trục tọa độ. b) Viết phương trình của đường thẳng (d) là tiếp tuyến của (P) để tiếp điểm A đồng thời cũng là tiếp tuyến của (P’) tại tiếp điểm B (đường thẳng (d) nếu có, được gọi là tiếp tuyến chung của (P) và (P’).