Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 5.48 trang 186 sách bài tập Đại số và Giải tích 11 Nâng cao

Chứng minh

a) Chứng minh rằng nếu \(P\left( x \right)\) là một đa thức bậc ba và \(\alpha \) là một số thực bất kì ta có

\(P\left( {x + \alpha } \right) = P\left( \alpha  \right) + xP'\left( \alpha  \right) + {{{x^2}} \over 2}P"\left( \alpha  \right)) \)

\(+ {{{x^3}} \over 6}P'''\left( \alpha  \right),\) \(\left( {\forall x \in R} \right)\)

b) Xác định đa thức \(P\left( x \right)\) bậc ba biết

    \(P\left( 0 \right) = P'\left( 0 \right) = P"\left( 0 \right)=P'''\left( 0 \right)\,\, = 1\)

Giải

Ta viết đa thức bậc ba \(P\left( x \right)\) dưới dạng

                                    \(P\left( x \right) = {a_0}{x^3} + {a_1}{x^2} + {a_2}x + {a_3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{a_0} \ne 0} \right)\)

Ta có

\(\eqalign{& P'\left( x \right) = 3{a_0}{x^2} + 2{a_1}x + {a_2}  \cr& P''\left( x \right) = 6{a_0}x + 2{a_1}  \cr& P'''\left( x \right) = 6{a_0}. \cr} \)

Vậy

\(\eqalign{& {{{x^3}} \over 6}P'''\left( \alpha  \right) + {{{x^2}} \over 2}P''\left( \alpha  \right) + xP'\left( \alpha  \right) + P\left( \alpha  \right)  \cr&  = {a_0}{x^3} + \left( {3{a_0}\alpha  + {a_1}} \right){x^2} + \left( {3{a_0}{\alpha ^2}  + 2{a_1}\alpha  + {a_2}} \right)x\cr& + {a_0}{\alpha ^3} + {a_1}{\alpha ^2} + {a_2}\alpha  + {a_3}\,\,\,\,\,\,\left( 1 \right) \cr} \)

 

Mặt khác ta có

\(\eqalign{& P\left( {x + \alpha } \right) = {a_0}{\left( {x + \alpha } \right)^3} + {a_1}{\left( {x + \alpha } \right)^2} \cr&  \;\;\; + {a_2}\left( {x + \alpha } \right) + {a_3}  \cr&  = {a_0}\left( {{x^3} + 3\alpha {x^2} + 3{\alpha ^2}x + {\alpha ^3}} \right) \cr&\;\;\; + {a_1}\left( {{x^2} + 2\alpha x + {\alpha ^2}} \right) + {a_2}\left( {x + \alpha } \right) + {a_3}  \cr&  = {a_0}{x^3} + \left( {3{a_0}\alpha  + {a_1}} \right){x^2} + \left( {3{a_0}{\alpha ^2} + 2{a_1}\alpha  + {a_2}} \right)x \cr&\;\;\;  + {a_0}{\alpha ^3} + {a_1}{\alpha ^2} + {a_2}\alpha  + {a_3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \cr} \)

So sánh (1) và (2) , suy ra điều phải chứng minh.

b) Khi \(\alpha  = 0,\) ta được

                        \(P\left( x \right) = P\left( 0 \right) + xP'\left( 0 \right) + {{{x^2}} \over 2}P''\left( 0 \right) + {{{x^3}} \over 6}P'''\left( 0 \right).\)

                        \(P\left( 0 \right) = P'\left( 0 \right) = P''\left( 0 \right) = P'''\left( 0 \right) = 1\)

Nên đa thức tìm là

                        \(P\left( x \right) = 1 + x + {{{x^2}} \over 2} + {{{x^3}} \over 6}\)

Sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Xem thêm tại đây: Ôn tập chương V - Đạo hàm