Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 6 trang 137 Sách Bài Tập (SBT) Toán lớp 7 tập 1

Hãy chứng tỏ Am // BC.

Cho tam giác ABC có \(\widehat B = \widehat C = 50^\circ \). Gọi tia Am là tia phân giác của góc ngoài ở đỉnh A. Hãy chứng tỏ Am // BC

Giải

Trong ∆ABC, ta có: \(\widehat {CA{\rm{D}}}\) là góc ngoài tại đỉnh A

\(\widehat {CAD}{\rm{ = }}\widehat B + \widehat C = 50^\circ  + 50^\circ  = 100^\circ \) (tính chất góc ngoài của tam giác)

\(\widehat {{A_1}} = \widehat {{A_2}} = {1 \over 2}\widehat {CA{\rm{D}}} = 50^\circ \) (Vì tia Am là tia phân giác của \(\widehat {CA{\rm{D}}}\))

Suy ra: \(\widehat {{A_1}} = \widehat C = 50^\circ \)

\( \Rightarrow \) Am // BC (Vì có cặp góc ở vị trí so le trong bằng nhau)

Sachbaitap.com

Xem lời giải SGK - Toán 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.