Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 63 trang 15 Sách Bài Tập (SBT) Toán 9 Tập 1

Chứng minh

Chứng minh:

a) \({{\left( {x\sqrt y  + y\sqrt x } \right)\left( {\sqrt x  - \sqrt y } \right)} \over {\sqrt {xy} }} = x - y\)

với x > 0 và y > 0;

b) \({{\sqrt {{x^3}}  - 1} \over {\sqrt x  - 1}} = x + \sqrt x  + 1\) với \(x \ge 0\) và \(x \ne 1\).

Gợi ý làm bài

a) Ta có:

\({{\left( {x\sqrt y  + y\sqrt x } \right)\left( {\sqrt x  - \sqrt y } \right)} \over {\sqrt {xy} }} = {{\left( {\sqrt {{x^2}y}  + \sqrt {x{y^2}} } \right)\left( {\sqrt x  - \sqrt y } \right)} \over {\sqrt {xy} }}\)

\( = {{\sqrt {xy} \left( {\sqrt x  + \sqrt y } \right)\left( {\sqrt x  - \sqrt y } \right)} \over {\sqrt {xy} }} = \left( {\sqrt x  + \sqrt y } \right)\left( {\sqrt x  - \sqrt y } \right)\)

\( = {\left( {\sqrt x } \right)^2} - {\left( {\sqrt y } \right)^2} = x - y\)

(với x > 0 và y > 0)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b) Vì x > 0 nên \(\sqrt {{x^3}}  = {\left( {\sqrt x } \right)^3}\)

Ta có:

\({{\sqrt {{x^3}}  - 1} \over {\sqrt x  - 1}} = {{{{\left( {\sqrt x } \right)}^3} - {1^3}} \over {\sqrt x  - 1}} = {{\left( {\sqrt x  - 1} \right)\left( {x + \sqrt x  + 1} \right)} \over {\sqrt x  - 1}}\)

\( = x + \sqrt x  + 1$ với \(x \ge 0\) và \(x \ne 1\).

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.