Câu 67 trang 15 Sách Bài Tập (SBT) Toán 9 Tập 1Áp dụng bất đẳng thức Cô-si cho hai số không âm, chứng minh Áp dụng bất đẳng thức Cô-si cho hai số không âm, chứng minh: a) Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất. b) Trong các hinh chữ nhật có cùng diện tích thì hình vuông có chu vi bé nhất. Gợi ý làm bài Với hai số không âm a và b, bất đẳng thức Cô-si cho hai số đó là: \({{a + b} \over 2} \ge \sqrt {ab} \) a) Các hình chữ nhật có cùng chu vi thì \({{a + b} \over 2}\) không đổi. Từ bất đẳng thức: \({{a + b} \over 2} \ge \sqrt {ab} \) và \({{a + b} \over 2}\) không đổi suy ra \({{a + b} \over 2}\) \(\sqrt {ab} \) đạt giá trị lớn nhất bằng \({{a + b} \over 2}\) khi a = b. Điều này cho thấy trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất. b) Các hình chữ nhật có cùng diện tích thì ab không đổi. Từ bất đẳng thức: \({{a + b} \over 2} \ge \sqrt {ab} \) và ab không đổi suy ra \({{a + b} \over 2}\) đạt giá trị nhỏ nhất bằng \(\sqrt {ab} \) khi a = b. Điều này cho thấy trong các hình chữ nhật có cùng diện tích thì hình vuông có chu vi bé nhất. Sachbaitap.com
Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai
|
Khử mẫu của mỗi biểu thức lấy căn và rút gọn ( nếu được)