Câu 63 trang 16 Sách bài tập (SBT) Toán 8 tập 2Tính gần đúng nghiệm của các phương trình sau, làm tròn đến chữ số thập phân thứ hai (dùng máy tính bỏ túi để tính toán) Tính gần đúng nghiệm của các phương trình sau, làm tròn đến chữ số thập phân thứ hai (dùng máy tính bỏ túi để tính toán) a. \(\left( {x\sqrt {13} + \sqrt 5 } \right)\left( {\sqrt 7 - x\sqrt 3 } \right) = 0\) b. \(\left( {x\sqrt {2,7} - 1,54} \right)\left( {\sqrt {1,02} + x\sqrt {3,1} } \right) = 0\) Giải: a. \(\left( {x\sqrt {13} + \sqrt 5 } \right)\left( {\sqrt 7 - x\sqrt 3 } \right) = 0\) \( \Leftrightarrow x\sqrt {13} + \sqrt 5 = 0\) hoặc \(\sqrt 7 - x\sqrt 3 = 0\) + \(x\sqrt {13} + \sqrt 5 = 0 \Leftrightarrow x = - {{\sqrt 5 } \over {\sqrt {13} }} \approx - 0,62\) + \(\sqrt 7 - x\sqrt 3 = 0 \Leftrightarrow x = {{\sqrt 7 } \over {\sqrt 3 }} \approx 1,53\) Vậy phương trình có nghiệm x = -0,62 hoặc x = 1,53. b. \(\left( {x\sqrt {2,7} - 1,54} \right)\left( {\sqrt {1,02} + x\sqrt {3,1} } \right) = 0\) \( \Leftrightarrow x\sqrt {2,7} - 1,54 = 0\) hoặc \(\sqrt {1,02} + x\sqrt {3,1} = 0\) + \(x\sqrt {2,7} - 1,54 = 0 \Leftrightarrow x = {{1,54} \over {\sqrt {2,7} }} \approx 0,94\) + \(\sqrt {1,02} + x\sqrt {3,1} = 0 \Leftrightarrow x = - {{\sqrt {1,02} } \over {\sqrt {3,1} }} \approx - 0,57\) Vậy phương trình có nghiệm x = 0,94 hoặc x = -0,57 Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Ôn tập chương III - Phương trình bậc nhất một ẩn
|