Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 69 trang 127 Sách bài tập Hình học 11 Nâng cao

Giải bài tập Câu 69 trang 127 Sách bài tập Hình học 11 Nâng cao

Đáy của hình chóp A.BCD là tam giác đều. Đường cao của hình chóp kẻ từ đỉnh A đi qua trung điểm H của cạnh CD. Cắt hình chóp đó bởi mặt phẳng song song với AB và CD và cách đỉnh B một khoảng bằng d. Tính diện tích thiết diện thu được, biết cạnh của tam giác đều BCD là a và \(AB = a\sqrt 2 \).

Trả lời

 

Dễ thấy thiết diện là hình bình hành PQRS. Mặt khác theo giả thiết \(C{\rm{D}} \bot \left( {AHB} \right)\) nên \(C{\rm{D}} \bot AB\). Vậy PQRS là hình chữ nhật.

Kẻ \(HE \bot AB\) thì \(HE \bot \left( {PQ{\rm{RS}}} \right)\). Kẻ IK // HE thì \(IK \bot \left( {PQ{\rm{RS}}} \right)\). Do AB // (PQRS) và \(d\left( {B;\left( {PQ{\rm{RS}}} \right)} \right) = d\) nên IK = d.

Ta có

\(HE = {{AH.HB} \over {AB}} = {{\sqrt {A{B^2} - B{H^2}} .HB} \over {AB}} = {{a\sqrt {15} } \over {4\sqrt 2 }}\)

Lại có

 \(\eqalign{  & {{IK} \over {HE}} = {{BI} \over {BH}} = {{R{\rm{S}}} \over {C{\rm{D}}}}  \cr  &  \Rightarrow R{\rm{S}} = {{da} \over {a\sqrt {15} }}.4\sqrt 2  = {{4\sqrt 2 d} \over {\sqrt {15} }};  \cr  & BI = {{IK.BH} \over {HE}} = {{d.{{a\sqrt 3 } \over 2}} \over {{{a\sqrt {15} } \over {4\sqrt 2 }}}} = {{2\sqrt 2 d} \over {\sqrt 5 }} \cr} \)

Mặt khác \({{IJ} \over {AB}} = {{HI} \over {HB}} = {{\left( {HB - IB} \right)} \over {HB}};\)

Từ đó \(IJ = {{AB\left( {HB - IB} \right)} \over {HB}} = {{\sqrt 2 \left( {a\sqrt {15}  - 4\sqrt 2 d} \right)} \over {\sqrt {15} }}\)

Vậy \({S_{PQ{\rm{RS}}}} = R{\rm{S}}.IJ = {8 \over {15}}d\left( {a\sqrt {15}  - 4\sqrt 2 d} \right)\) .

Sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 5: Khoảng cách