Câu 82 trang 18 Sách Bài Tập (SBT) Toán 9 Tập 1Tìm giá trị nhỏ nhất của biểu thức a) Chứng mình: \({x^2} + x\sqrt 3 + 1 = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\) b) Tìm giá trị nhỏ nhất của biểu thức: \({x^2} + x\sqrt 3 + 1\). Giá trị đó đạt được khi x bằng bao nhiêu? Gợi ý làm bài a) Ta có: \({x^2} + x\sqrt 3 + 1 = {x^2} + 2x{{\sqrt 3 } \over 2} + {3 \over 4} + {1 \over 4}\) \(\eqalign{ Vế trái bằng vế phải nên đẳng thức được chứng minh. b) Ta có: \({x^2} + x\sqrt 3 + 1 = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\) Vì \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} \ge 0\) với mọi x nên \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \ge {1 \over 4}\) Giá trị biểu thức \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\) bằng \({1 \over 4}\) khi \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} = 0\) Suy ra: \(x = - {{\sqrt 3 } \over 2}.\) Sachbaitap.com
Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 8: Rút gọn biểu thức chứa căn thức bậc hai
|
Chứng tỏ giá trị các biểu thức sau là số hữu tỉ