Câu 90 trang 91 Sách bài tập (SBT) Toán 8 tập 1Cho ba điểm A, B, C trên giấy kẻ ô vuông (h.12). Hãy vẽ điểm thứ tư M sao cho A, B, C, M là bốn đỉnh của một hình bình hành Cho ba điểm A, B, C trên giấy kẻ ô vuông (h.12). Hãy vẽ điểm thứ tư M sao cho A, B, C, M là bốn đỉnh của một hình bình hành Giải: - Nếu hình bình hành nhận AC làm đường chéo vì AB là đường chéo hình vuông có cạnh là hai ô vuông nên \(C{M_1}\) là đường chéo hình vuông cạnh 2 ô vuông và A, \({M_1}\)nằm trên nửa mặt phẳng bờ BC ta có hình bình hành \(ABC{M_1}\) . - Nếu hình bình hành nhận BC làm đường chéo, điểm A cách điểm C ba ô vuông , điểm B cách \({M_2}\) là ba ô vuông và C, \({M_2}\)cũng nằm trên nửa mặt phẳng bờ AB ta có hình bình hành \(AB{M_2}C\) - Nếu hình bình hành nhận AB làm đường chéo thì điểm \({M_3}\) cách điểm B ba ô vuông, \({M_3}\)và A nằm trên cũng một nửa mặt phẳng bờ BC ta có hình bình hành \(ACB{M_3}\) . Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 7. Hình bình hành
|
Cho tam giác ABC. Dựng đường thẳng song song với BC, cắt cạnh AB ở E, cắt cạnh AC ở F sao cho BE = AF.
Cho hình bình hành ABCD , các đường chéo cắt nhau tại O. Gọi E, F theo thứ tự là trung điểm của OD, OB. Gọi K là giao điểm của AE và CD. Chứng minh rằng:
Cho hình bình hành ABCD. Lấy điểm E trên cạnh AB, điểm F trên cạnh CD sao cho AE = CF. Chứng minh rằng ba đường thẳng AC, BD, EF đồng quy.