Câu 90 trang 91 Sách bài tập (SBT) Toán 8 tập 1Cho ba điểm A, B, C trên giấy kẻ ô vuông (h.12). Hãy vẽ điểm thứ tư M sao cho A, B, C, M là bốn đỉnh của một hình bình hành Cho ba điểm A, B, C trên giấy kẻ ô vuông (h.12). Hãy vẽ điểm thứ tư M sao cho A, B, C, M là bốn đỉnh của một hình bình hành
Giải: - Nếu hình bình hành nhận AC làm đường chéo vì AB là đường chéo hình vuông có cạnh là hai ô vuông nên \(C{M_1}\) là đường chéo hình vuông cạnh 2 ô vuông và A, \({M_1}\)nằm trên nửa mặt phẳng bờ BC ta có hình bình hành \(ABC{M_1}\) . - Nếu hình bình hành nhận BC làm đường chéo, điểm A cách điểm C ba ô vuông , điểm B cách \({M_2}\) là ba ô vuông và C, \({M_2}\)cũng nằm trên nửa mặt phẳng bờ AB ta có hình bình hành \(AB{M_2}C\) - Nếu hình bình hành nhận AB làm đường chéo thì điểm \({M_3}\) cách điểm B ba ô vuông, \({M_3}\)và A nằm trên cũng một nửa mặt phẳng bờ BC ta có hình bình hành \(ACB{M_3}\) . Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 7. Hình bình hành
|
Cho tam giác ABC. Dựng đường thẳng song song với BC, cắt cạnh AB ở E, cắt cạnh AC ở F sao cho BE = AF.
Cho hình bình hành ABCD , các đường chéo cắt nhau tại O. Gọi E, F theo thứ tự là trung điểm của OD, OB. Gọi K là giao điểm của AE và CD. Chứng minh rằng:
Cho hình bình hành ABCD. Lấy điểm E trên cạnh AB, điểm F trên cạnh CD sao cho AE = CF. Chứng minh rằng ba đường thẳng AC, BD, EF đồng quy.