Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 91 trang 121 Sách Bài Tập (SBT) Toán 9 Tập 1

Cho hình thang ABCD có hai cạnh bên là AD và BC bằng nhau, đường chéo AC vuông góc với cạnh bên BC

Cho hình thang ABCD có hai cạnh bên là AD và BC bằng nhau, đường chéo AC vuông góc với cạnh bên BC. Biết AD = 5a, AC = 12a.

a) Tính \({{\sin B + c{\rm{osB}}} \over {\sin B - c{\rm{osB}}}}.\)

b) Tính chiều cao của hình thang ABCD.

Gợi ý làm bài

a) Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

\(A{B^2} = B{C^2} + A{C^2} = {(5a)^2} + {(12a)^2} = 169{a^2}\)

Suy ra: \(AB = \sqrt {169{a^2}}  = 13a\)

Ta có: \(\sin \widehat B = {{AC} \over {AB}} = {{12a} \over {13a}} = {{12} \over {13}}\)

\(\cos \widehat B = {{BC} \over {AB}} = {{5a} \over {13a}} = {5 \over {13}}\)

Suy ra: 

\({{\sin \widehat B + \cos \widehat B} \over {\sin \widehat B - \cos \widehat B}} = {{{{12} \over {13}} + {5 \over {13}}} \over {{{12} \over {13}} - {5 \over {13}}}} = {{{{17} \over {13}}} \over {{7 \over {13}}}} = {{17} \over {13}}.{{13} \over 7} = {{17} \over 7}\)

b) Kẻ \(CH \bot AB\)

Trong tam giác vuông BCH, ta có:

\(CH = CB.\sin \widehat B = 5a.{{12} \over {13}} = {{60a} \over {13}}\)

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.