Bài 1.1 trang 153 Sách bài tập (SBT) Đại số và giải tích 11Chiều ngược lại có đúng không ? Biết rằng dãy số \(\left( {{u_n}} \right)\) có giới hạn là 0. Giải thích vì sao dãy số \(\left( {{v_n}} \right)\) với \({v_n} = \left| {{u_n}} \right|\) cũng có giới hạn là 0. Chiều ngược lại có đúngkhông ? Giải: Vì \(\left( {{u_n}} \right)\) có giới hạn là 0 nên \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tuỳý, kể từ một số hạng nàođó trởđi. Mặt khác, \(\left| {{v_n}} \right| = \left| {\left| {{u_n}} \right|} \right| = \left| {{u_n}} \right|\). Do đó, \(\left| {{v_n}} \right|\) cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi. Vậy, \(\left( {{v_n}} \right)\) có giới hạn là 0. (Chứng minh tương tự, ta có chiều ngược lại cũng đúng).
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
Xem thêm tại đây:
Bài 1. Giới hạn của dãy số
|
Vì sao dãy số không thể có giới hạn là 0 khi ?
Cho biết dãy số (un) có giới hạn hữu hạn, còn dãy số (vn) không có giới hạn hữu hạn.
Tính giới hạn của các dãy số có số hạng tổng quát sau đây