Bài 1.1 trang 153 Sách bài tập (SBT) Đại số và giải tích 11Chiều ngược lại có đúng không ? Biết rằng dãy số \(\left( {{u_n}} \right)\) có giới hạn là 0. Giải thích vì sao dãy số \(\left( {{v_n}} \right)\) với \({v_n} = \left| {{u_n}} \right|\) cũng có giới hạn là 0. Chiều ngược lại có đúngkhông ? Giải: Vì \(\left( {{u_n}} \right)\) có giới hạn là 0 nên \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tuỳý, kể từ một số hạng nàođó trởđi. Mặt khác, \(\left| {{v_n}} \right| = \left| {\left| {{u_n}} \right|} \right| = \left| {{u_n}} \right|\). Do đó, \(\left| {{v_n}} \right|\) cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi. Vậy, \(\left( {{v_n}} \right)\) có giới hạn là 0. (Chứng minh tương tự, ta có chiều ngược lại cũng đúng).
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 1. Giới hạn của dãy số
|
Vì sao dãy số không thể có giới hạn là 0 khi ?
Cho biết dãy số (un) có giới hạn hữu hạn, còn dãy số (vn) không có giới hạn hữu hạn.
Tính giới hạn của các dãy số có số hạng tổng quát sau đây