Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.16 trang 15 Sách bài tập (SBT) Giải tích 12

Xác định giá trị của tham số m để hàm số y = x3 – 2x2 + mx + 1 đạt cực tiểu tại x = 1.

Xác định giá trị của tham số m để hàm số y = x3 – 2x2 + mx + 1  đạt cực tiểu tại x = 1.

(Đề thi tốt nghiệp THPT năm 2011)

Hướng dẫn làm bài:

TXĐ:  D = R

       y’ = 3x2 – 4x + m   ; y’ = 0 ⇔ 3x2 – 4x + m = 0

Phương trình trên có hai nghiệm phân biệt khi:

       ∆’ = 4 – 3m   > 0 ⇔ \(m < {4 \over 3}\)             (*)

Hàm số có cực trị tại x = 1 thì :

      y’(1) = 3 – 4 + m = 0  => m = 1  (thỏa mãn điều kiện (*) )

Mặt khác, vì:

       y’’ = 6x – 4    => y’’(1) = 6 – 4 = 2 > 0

cho nên tại x = 1, hàm số đạt cực tiểu.

Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.