Bài 16 trang 198 Sách bài tập (SBT) Toán Hình học 10Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật có một đỉnh là O Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật có một đỉnh là O, diện tích bằng 12 và đường tròn ngoại tiếp (T) của có có phương trình là \({\left( {x - {5 \over 2}} \right)^2} + {y^2} = {{25} \over 4}\). Tìm tọa độ các đỉnh còn lại của hình chữ nhật. Gợi ý làm bài (Xem hình 3.39) Đường tròn (T) có tâm \(I\left( {{5 \over 2};0} \right)\) và bán kính \(R = {5 \over 2}\). \(\overrightarrow {OB} = 2\overrightarrow {OI} = \left( {5;0} \right)\) suy ra B(5 ; 0). Đặt A(x ; y) ta có hệ phương trình: \(\eqalign{ \( \Leftrightarrow \left\{ \matrix{ Vậy ta được \(A\left( {{9 \over 5};{{12} \over 5}} \right)\), \(C\left( {{6 \over 5};{{ - 12} \over 5}} \right)\) Hoặc \(A\left( {{9 \over 5};{{ - 12} \over 5}} \right)\), \(C\left( {{6 \over 5};{{12} \over 5}} \right)\) Sachbaitap.net
Xem lời giải SGK - Toán 10 - Xem ngay >> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
Xem thêm tại đây:
I-Đề toán tổng hợp
|