Bài 2.20 trang 92 Sách bài tập (SBT) Toán Hình học 10Cho tam giác ABC. Gọi H là trực tâm của tam giác và M là trung điểm của cạnh BC. Cho tam giác ABC. Gọi H là trực tâm của tam giác và M là trung điểm của cạnh BC. Chứng minh rằng \(\overrightarrow {MH} .\overrightarrow {MA} = {1 \over 4}B{C^2}\) Gợi ý làm bài (h.2.24) Ta có \(\overrightarrow {AM} = {1 \over 2}(\overrightarrow {AB} + \overrightarrow {AC} )\) \(\overrightarrow {HM} = {1 \over 2}(\overrightarrow {HB} + \overrightarrow {HC} )\) \( = > \overrightarrow {AM} .\overrightarrow {HM} = {1 \over 4}(\overrightarrow {AB} + \overrightarrow {AC} ).(\overrightarrow {HB} + \overrightarrow {HC} )\) \( = {1 \over 4}(\overrightarrow {AB} .\overrightarrow {HB} + \underbrace {\overrightarrow {AB} .\overrightarrow {HC} }_{ = 0} + \underbrace {\overrightarrow {AC} \overrightarrow {.HB} }_{ = 0} + \overrightarrow {AC} .\overrightarrow {HC} )\) \( = {1 \over 4}(\overrightarrow {AB} .\overrightarrow {HB} + \overrightarrow {AC} .\overrightarrow {HC} )\) \( = {1 \over 4}\left[ {\overrightarrow {AB} .(\overrightarrow {HC} + \overrightarrow {CB} ) + \overrightarrow {AC} .(\overrightarrow {HB} + \overrightarrow {BC} )} \right]\) \( = {1 \over 4}\left[ {\underbrace {\overrightarrow {AB} .\overrightarrow {HC} }_0 + \overrightarrow {AB} .\overrightarrow {CB} + \underbrace {\overrightarrow {AC} .\overrightarrow {HB} }_0 + \overrightarrow {AC} .\overrightarrow {BC} } \right]\) \( = {1 \over 4}(\overrightarrow {AB} .\overrightarrow {CB} + \overrightarrow {AC} .\overrightarrow {BC} ) = {1 \over 4}(\overrightarrow {AB} .\overrightarrow {CB} - \overrightarrow {AC} .\overrightarrow {CB} )\) \( = {1 \over 4}\overrightarrow {CB} .(\underbrace {\overrightarrow {AB} - \overrightarrow {AC} }_{\overrightarrow {CB} }) = {1 \over 4}{\overrightarrow {CB} ^2} = {1 \over 4}{\overrightarrow {BC} ^2}\) Sachbaitap.net
Xem lời giải SGK - Toán 10 - Xem ngay >> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 2: Tích vô hướng của hai vec tơ
|
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại M.