Bài 2.22 trang 92 Sách bài tập (SBT) Toán Hình học 10Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại M. Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại M. Gọi P là trung điểm của cạnh AD. Chứng minh rằng MP vuông góc với BC khi và chỉ khi \(\overrightarrow {MA} .\overrightarrow {MC} = \overrightarrow {MB} .\overrightarrow {MD} \) Gợi ý làm bài (h.2.26) \(2\overrightarrow {MP} .\overrightarrow {BC} = (\overrightarrow {MA} + \overrightarrow {MD} )(\overrightarrow {MC} - \overrightarrow {MB} )\) \( = \overrightarrow {MA} .\overrightarrow {MC} - \underbrace {\overrightarrow {MA} .\overrightarrow {MB} }_0 + \underbrace {\overrightarrow {MD} .\overrightarrow {MC} }_0 - \overrightarrow {MD} .\overrightarrow {MB} \) \(= \overrightarrow {MA} .\overrightarrow {MC} - \overrightarrow {MD} .\overrightarrow {MB} \) Do đó: \(\overrightarrow {MP} \bot \overrightarrow {BC} \Leftrightarrow \overrightarrow {MP} .\overrightarrow {BC} = \overrightarrow 0 \) \( \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MC} = \overrightarrow {MD} .\overrightarrow {MB}\) Sachbaitap.net
Xem lời giải SGK - Toán 10 - Xem ngay >> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
Xem thêm tại đây:
Bài 2: Tích vô hướng của hai vec tơ
|