Bài 2.29 trang 80 Sách bài tập (SBT) Hình học 11Tính độ dài.A’B’, B’C’ Cho ba mặt phẳng \(\left( \alpha \right),\left( \beta \right),\left( \gamma \right)\) song song với nhau. Hai đường thẳng a và a’ cắt ba mặt phẳng ấy theo thứ tự nói trên tại A, B, C vàA’, B’, C’. Cho \(AB = 5,BC = 4,A'C' = 18\). Tính độ dài.A’B’, B’C’ Giải: Vì \(\left( \alpha \right)\parallel \left( \beta \right)\parallel \left( \gamma \right)\) nên \({{AB} \over {A'B'}} = {{BC} \over {B'C'}}\) Mặt khác ta có: Quảng cáo \({{AB} \over {A'B'}} = {{BC} \over {B'C'}} = {{AB + BC} \over {A'B' + B'C'}} = {{AC} \over {A'C'}}\) Suy ra: \(A'B' = {{A'C'.AB} \over {AC}} = {{18.5} \over 9} = 10\) Vậy A’B’ = 10 và \(B'C' = {{A'C'.BC} \over {AC}} = {{18.4} \over 9} = 8\) Vậy B’C’ = 8. Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 4. Hai mặt phẳng song song
|
Chứng minh rằng IJ luôn luôn song song với một mặt phẳng cố định.
Cho hai tia Ax, By chéo nhau. Lấy M, N lần lượt là các điểm di động trên Ax, By
Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau hay không? Hình chiếu song song của hai đường thẳng cắt nhau có song song với nhau hay không?
Chứng minh rằng có thể xem tam giác ABC là hình chiếu song song của một tam giác đều nào đó.