Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.5 trang 112 Sách bài tập (SBT) Đại số và giải tích 11

Viết năm số hạng đầu của dãy số;

Cho dãy số (un) với \(\left( {{u_n}} \right) = 1 + \left( {n - 1} \right){.2^n}\)

a)      Viết năm số hạng đầu của dãy số ;

b)      Tìm công thức truy hồi ;

c)      Chứng minh (un) là dãy số tăng và bị chặn dưới.

Giải:

a)      Học sinh tự giải.

b)      HD: Tìm hiệu \({u_{n + 1}} - {u_n}\)

ĐS: 

\(\left\{ \matrix{
{u_1} = 1 \hfill \cr
{u_{n + 1}} = {u_n} + \left( {n + 1} \right){2^n}{\rm\,\,{ với }}\,\,n \ge 1 \hfill \cr} \right.\)

c)      HD: Xét dấu \({u_{n + 1}} - {u_n}\)

Xem lời giải SGK - Toán 11 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 2. Dãy số