Bài 2.58 trang 134 Sách bài tập (SBT) Giải tích 12Tìm số tự nhiên n bé nhất sao cho: Tìm số tự nhiên n bé nhất sao cho: a) \({(\frac{1}{2})^n} \le {10^{ - 9}}\) b) \(3 - {(\frac{7}{5})^n} \le 0\) c) \(1 - {(\frac{4}{5})^n} \ge 0,97\) d) \({(1 + \frac{5}{{100}})^n} \ge 2\) Hướng dẫn làm bài: a) \(n \ge {\log _{\frac{1}{2}}}{10^{ - 9}} \Leftrightarrow n \ge 9{\log _2}10 \approx 29,897\) Vì n là số tự nhiên bé nhất nên n = 30. b) n = 4 c) n = 16 d) n = 15 Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Ôn tập Chương II - Hàm số lũy thừa. Hàm số mũ và hàm số Lôgarit
|
a) Xác định a, b, c, d để đồ thị của các hàm số: y = x2 + ax + b và y = cx + d cùng đi qua hai điểm M(1; 1) và B(3; 3).
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số: b) Viết phương trình tiếp tuyến của (C) , biết nó vuông góc với đường thẳng
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : b)Tính diện tích hình phẳng giới hạn bởi (C), tiếp tuyến của (C) tại A(2; 3) và đường thẳng x = 4.
Tìm các đường tiệm cận của đồ thị các hàm số sau: