Bài 5.1 trang 219 sách bài tập (SBT) - Giải tích 12a) Xác định a, b, c, d để đồ thị của các hàm số: y = x2 + ax + b và y = cx + d cùng đi qua hai điểm M(1; 1) và B(3; 3). a) Xác định a, b, c, d để đồ thị của các hàm số: y = x2 + ax + b và y = cx + d cùng đi qua hai điểm M(1; 1) và B(3; 3). b) Vẽ đồ thị của các hàm số ứng với các giá trị a, b, c và d tìm được trên cùng một mặt phẳng tọa độ. Tính diện tích của hình phẳng giới hạn bởi hai đường cong trên. c) Tính thể tích của vật thể tròn xoay sinh bởi hình phẳng trên quay quanh trục hoành. Hướng dẫn làm bài a) a và b thỏa mãn hệ phương trình : \(\left\{ {\matrix{{1 + a + b = 1} \cr {9 + 3a + b = 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{a + b = 0} \cr {3a + b = - 6} \cr} } \right. \Leftrightarrow\left\{ {\matrix{{a = - 3} \cr {b = 3} \cr} } \right.\) c và d thỏa mãn hệ phương trình: \(\left\{ {\matrix{{c + d = 1} \cr {3c + d = 3} \cr} \Leftrightarrow \left\{ {\matrix{{c = 1} \cr {d = 0} \cr} } \right.} \right.\) b) (H.90) Ta có hai hàm số tương ứng là: y = x2 – 3x + 3 và y = x Vậy \(S = \int\limits_1^3 {( - {x^2} + 4x - 3)dx} = {4 \over 3}\) (đơn vị diện tích) c) V = V1 – V2 , trong đó V1 là thể tích vật thể tròn xoay sinh ra do quay hình thang ACDB quanh trục Ox , V2 là thể tích vật thể tròn xoay sinh ra do quay hình thang cong ACDB quanh trục Ox. Ta có \({V_1} = \pi \int\limits_1^3 {{x^2}dx = {{26} \over 3}\pi } \) \({V_2} = \pi \int\limits_1^3 {{{({x^2} - 3x + 3)}^2}dx = {{22} \over 5}\pi } \) Vậy \(V = {{26} \over 3}\pi - {{22} \over 5}\pi = {{64} \over {15}}\pi \) (đơn vị thể tích) Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
BÀI TẬP ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12
|
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số: b) Viết phương trình tiếp tuyến của (C) , biết nó vuông góc với đường thẳng
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : b)Tính diện tích hình phẳng giới hạn bởi (C), tiếp tuyến của (C) tại A(2; 3) và đường thẳng x = 4.
Tìm các đường tiệm cận của đồ thị các hàm số sau: