Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.62 trang 105 Sách bài tập (SBT) Toán Hình học 10

Cho tam giác ABC

Cho tam giác ABC \(\widehat {BAC} = {60^ \circ }\), AB = 4 và AC = 6.

a) Tính tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} ,\overrightarrow {AB} .\overrightarrow {BC} \), độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác ABC;

b) Lấy các điểm M, N định bởi: \(2\overrightarrow {AM}  + 3\overrightarrow {MC}  = \overrightarrow 0 \) và \(\overrightarrow {NB}  + x\overrightarrow {NC}  = \overrightarrow 0 (x \ne  - 1)\). Định x để AN vuông góc với BM.

Gợi ý làm bài

a) 

\(\eqalign{
& \overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos A \cr
& = 4.6.\left( {{1 \over 2}} \right) = 12 \cr} \)

\(\eqalign{
& \overrightarrow {AB} .\overrightarrow {BC} = \overrightarrow {AB} (\overrightarrow {AC} - \overrightarrow {AB} ) \cr
& = \overrightarrow {AB} .\overrightarrow {AC} - A{B^2} = 12 - 16 = - 4 \cr
& B{C^2} = {(\overrightarrow {AC} - \overrightarrow {AB} )^2} \cr
& = A{C^2} - 2\overrightarrow {AB} .\overrightarrow {AC} + A{B^2} \cr
& = 36 - 2.12 + 16 = 28 \cr
& \Rightarrow BC = 2\sqrt {7.} \cr} \)

\(R = {{BC} \over {2\sin A}} = {{2\sqrt 7 } \over {2.{{\sqrt 3 } \over 2}}} = {{2\sqrt {21} } \over 3}.\)

b) 

\(\eqalign{
& 2\overrightarrow {AM} + 3\overrightarrow {MC} = \overrightarrow 0 \cr
& \Leftrightarrow 2\overrightarrow {AM} + 3(\overrightarrow {AC} - \overrightarrow {AM} ) = \overrightarrow 0 \cr
& \Rightarrow \overrightarrow {AM} = 3\overrightarrow {AC} \Rightarrow \overrightarrow {AB} + \overrightarrow {BM} = 3\overrightarrow {AC} \cr
& \Rightarrow \overrightarrow {BM} = 3\overrightarrow {AC} - \overrightarrow {AB} \cr} \)

và \(\eqalign{
& \overrightarrow {NB} + x\overrightarrow {NC} = \overrightarrow 0 \cr
& \Rightarrow \overrightarrow {AB} - \overrightarrow {AN} + x(\overrightarrow {AC} - \overrightarrow {AN} ) = \overrightarrow 0 \cr} \)

\( \Rightarrow \overrightarrow {AN}  = {1 \over {x + 1}}(\overrightarrow {AB}  + x\overrightarrow {AC} ).\)

AN vuông góc với BM: \(\overrightarrow {AN} .\overrightarrow {BM}  = 0\)

\(\eqalign{
& \Leftrightarrow \left( {\overrightarrow {AB} + x\overrightarrow {AC} } \right)(3\overrightarrow {AC} - \overrightarrow {AB} ) = 0 \cr
& \Leftrightarrow (3 - x)\overrightarrow {AB} .\overrightarrow {AC} - A{B^2} + 3xA{C^2} = 0 \cr
& \Leftrightarrow \left( {3 - x} \right).12 - 16 + 3x.36 = 0 \cr
& \Leftrightarrow 96x + 20 = 0 \cr
& \Leftrightarrow x = - {5 \over {24}} \cr} \)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.