Bài 3.15 trang 179 sách bài tập (SBT) - Giải tích 12Chứng minh rằng hàm số f(x) cho bởi là hàm số chẵn. Chứng minh rằng hàm số f(x) cho bởi \(f(x) = \int\limits_0^x {{t \over {\sqrt {1 + {t^4}} }}} dt,x \in R\) là hàm số chẵn. Hướng dẫn làm bài Đặt t = - s trong tích phân: \(f( - x) = \int\limits_0^{ - x} {{t \over {\sqrt {1 + {t^4}} }}} dt\) , ta được:\(f( - x) = \int\limits_0^{ - x} {{t \over {\sqrt {1 + {t^4}} }}} dt = \int\limits_0^x {{s \over {\sqrt {1 + {s^4}} }}} ds = f(x)\) Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 2. Tích phân
|
Giả sử hàm số f(x) liên tục trên đoạn [-a; a]. Chứng minh rằng:
Giả sử hàm số f(x) liên tục trên đoạn [a; b]. Chứng minh rằng: