Bài 83 trang 51 SBT Hình học 10 Nâng caoGiải bài tập Bài 83 trang 51 SBT Hình học 10 Nâng cao Cho tam giác đều \(ABC\) có \(I, J\) lần lượt là trung điểm của \(AB, AC\). Tìm \(\cos (\overrightarrow {AB} ,\overrightarrow {AC} ), \cos (\overrightarrow {AB} ,\overrightarrow {BC} ), \) \( \cos (\overrightarrow {BJ} ,\overrightarrow {BC} ), \cos (\overrightarrow {AB} ,\overrightarrow {BJ} ),\) \( \cos (\overrightarrow {BJ} ,\overrightarrow {CI} ). \) Giải (h.69).
\(\begin{array}{l}\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \cos {60^0} = \dfrac{1}{2}.\\\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \cos {120^0} = - \dfrac{1}{2}.\\\cos \left( {\overrightarrow {BJ} ,\overrightarrow {BC} } \right) = \cos {30^0} = \dfrac{{\sqrt 3 }}{2}.\\\cos \left( {\overrightarrow {AB} ,\overrightarrow {BJ} } \right) = \cos {150^0} = - \dfrac{{\sqrt 3 }}{2}.\\\cos \left( {\overrightarrow {BJ} ,\overrightarrow {CI} } \right) = \cos {120^0} = - \dfrac{1}{2}.\end{array}\) Sachbaitap.com
Xem thêm tại đây:
Bài tập Ôn tập chương II - Tích vô hướng của hai vectơ và ứng dụng
|