Câu 10. Trang 104 Sách Bài Tập (SBT) Toán 9 Tập 1Cho một tam giác vuông. Biết tỷ số hai cạnh góc vuông là 3 : 4 và cạnh huyền là 125cm. Tính độ dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền. Cho một tam giác vuông. Biết tỷ số hai cạnh góc vuông là 3 : 4 và cạnh huyền là 125cm. Tính độ dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền. Gợi ý làm bài: Giả sử tam giác ABC có \(\widehat {BAC} = {90^0 },AH \bot BC,BC = 125cm,{{AB} \over {AC}} = {3 \over 4}\) Từ \({{AB} \over {AC}} = {3 \over 4}\) suy ra: \({{AB} \over 3} = {{AC} \over 4} \Rightarrow {{A{B^2}} \over 9} = {{A{C^2}} \over {16}}\) Theo tính chất dãy tỉ số bằng nhau,ta có: \({{A{B^2}} \over 9} = {{A{C^2}} \over {16}} = {{A{B^2} + A{C^2}} \over {9 + 16}} = {{A{B^2} + A{C^2}} \over {25}}\) (1) Theo định lí Pi-ta-go, ta có: \(\eqalign{ Từ (1) và (2) suy ra: \({{A{B^2}} \over 9} = {{A{C^2}} \over {16}} = {{15625} \over {25}} = 625\) (3) Từ (3) suy ra : \(A{B^2} = 9.625 = 5625 \Rightarrow AB = \sqrt {5625} = 75(cm)\) \(A{C^2} = 16.625 = 10000 \Rightarrow AC = \sqrt {10000} = 100(cm)\) Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có: \(A{B^2} = BH.BC \Rightarrow BH = {{A{B^2}} \over {BC}} = {{{{75}^2}} \over {125}} = 45(cm)\) \(CH = BC - BH = 125 - 45 = 80(cm)\) Sachbaitap.com
Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
|
Hai vệ tinh đang bay ở vị trí A và B cùng cách mặt đất 230km có nhìn thấy nhau hay không nếu khoảng cách giữa chúng theo đường thẳng là 2200km?
Cho hai đoạn thẳng có độ dài là a và b. Dựng các đoạn thẳng có độ dài tương ứng bằng: