Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 1.31 trang 12 sách bài tập Đại số và Giải tích 11 Nâng cao

Chứng minh

a) Từ khẳng định (khi x thay đổi, hàm số \(y = \sin x\) nhận mọi giá trị tùy ý thuộc đoạn \(\left[ { - 1;1} \right]\)”, hãy chứng minh rằng: khi x thay đổi, hàm số  \(y = a\sin x + b\cos x\) (a, b là hằng số, \({a^2} + {b^2} \ne 0\)) lấy mọi giá trị tùy ý thuộc đoạn \(\left[ { - \sqrt {{a^2} + {b^2}} ;\sqrt {{a^2} + {b^2}} } \right]\)

b) Xét hàm số \(y = {{\sin x + \cos x - 1} \over {\sin x - \cos x + 3}}\). Viết đẳng thức đó thành

\(\left( {y - 1} \right)\sin x - \left( {y + 1} \right)\cos x =  - 3y - 1,\) để suy ra rằng khi x thay đổi, hàm số trên lấy mọi giá trị y tùy ý thỏa mãn điều kiện.

                                 \({\left( {y - 1} \right)^2} + {\left( {y + 1} \right)^2} \ge {\left( {3y + 1} \right)^2}\)

Từ đó hãy tìm giá trị lớn nhất và nhỏ nhất của hàm số đã cho.

c) Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(y = {{\cos x + 2\sin x + 3} \over {2\cos x - \sin x + 4}}\)

Giải

a) Ta có \(a\sin x + b\cos x = \sqrt {{a^2} + {b^2}} \sin \left( {x + \alpha } \right)\) nên dễ thấy hàm số y nhận mọi giá trị tùy ý thuộc đoạn \(\left[ { - \sqrt {{a^2} + {b^2}} ;\sqrt {{a^2} + {b^2}} } \right]\)

b) Do \(\left| {\sin x + \cos x} \right| \le \sqrt 2 \) nên \(\sin x - \cos x + 3 \ne 0\) với mọi x. Vậy cặp số \(\left( {x,y} \right)\) thỏa mãn \(y = {{\sin x + \cos x - 1} \over {\sin x - \cos x + 3}}\) khi và chỉ khi:

                                \(\left( {y - 1} \right)\sin x - \left( {y + 1} \right)\cos x =  - \left( {3y + 1} \right)\)

Với mọi giá trị y cho trước, biểu thức ở vế trái của đẳng thức này lấy mọi giá trị tùy ý thuộc đoạn \(\left[ { - \sqrt {{{\left( {y - 1} \right)}^2} + {{\left( {y + 1} \right)}^2}} ;\sqrt {{{\left( {y - 1} \right)}^2} + {{\left( {y + 1} \right)}^2}} } \right].\) Đẳng thức trên cho thấy \( - \left( {3y + 1} \right)\) phải thuộc đoạn đó, tức là:

                                \({\left( {3y + 1} \right)^2} \le {\left( {y - 1} \right)^2} + {\left( {y + 1} \right)^2}\)

Vậy với mọi y thỏa mãn điều kiện này, tồn tại x để

                                \(\left( {y - 1} \right)\sin x - \left( {y + 1} \right)\cos x =  - \left( {3y + 1} \right)\)

Để ý rằng bất đẳng thức trên tương đương với

                                \(7{y^2} + 6y - 1 \le 0\) tức là \( - 1 \le y \le {1 \over 7}\)

Từ đó suy ra giá trị lớn nhất và giá trị nhỏ nhất của y theo thứ tự là \({1 \over 7}\) và -1.

c) \(y = {{\cos x + 2\sin x + 3} \over {2\cos x - \sin x + 4}}\)

Để ý rằng \(\left| {2\cos x - \sin x} \right| \le \sqrt 5 ,\) nên \(2\cos x - \sin x + 4 \ne 0\) với mọi x. Vậy \(\left( {x,y} \right)\) thỏa mãn đẳng thức trên khi và chỉ khi \(\left( {y + 2} \right)\sin x + \left( {1 - 2y} \right)\cos x = 4y - 3\)

Lập luận tương tự như câu b), hàm số y lấy mọi giá trị sao cho

                                \({\left( {4y - 3} \right)^2} \le {\left( {y + 2} \right)^2} + {\left( {1 - 2y} \right)^2}\)

Bất đẳng thức tương đương với \(11{y^2} - 24y + 4 \le 0\) tức là \({2 \over {11}} \le y \le 2\)

Vậy giá trị lớn nhất và giá trị nhỏ nhất của y theo thứ tự là 2 và \({2 \over {11}}\)

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.