Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 1.32 trang 13 sách bài tập Đại số và Giải tích 11 Nâng cao

Giải các phương trình sau:

Giải các phương trình sau:

a) \(4\sin x - 3\cos x = 5\) 

b) \(3\cos x + 2\sqrt 3 \sin x = {9 \over 2}\)

c) \(3\sin 2x + 2\cos 2x = 3\)                                       

d) \(2\sin 2x + 3\cos 2x = \sqrt {13} \sin 14x\)

Giải              

a) \(x = \beta  + {\pi  \over 2} + k2\pi ,\)với \(\cos \alpha  = {4 \over 5}\) và \(\sin \alpha  = {3 \over 5}\)

b) \({3^2} + {\left( {2\sqrt 3 } \right)^2} = 21.\) Chia hai vế của phương trình cho \(\sqrt {21} \), ta được phương trình

                                \({2 \over {\sqrt {21} }}\cos x + {{2\sqrt 3 } \over {\sqrt {21} }}\sin x = {9 \over {2\sqrt {21} }}\)

Hiển nhiên có thể chọn \(\alpha \) sao cho \(\cos \alpha  = {3 \over {\sqrt {21} }}\) và  \(\sin \alpha  = {{2\sqrt 3 } \over {\sqrt {21} }} = 2\sqrt {{1 \over 7}} \) và chọn được \(\beta \) sao cho \(\cos \beta  = {9 \over {2\sqrt {21} }}.\) Khi đó phương trình đã cho trở thành \(\cos \left( {x - \alpha } \right) = \cos \beta ;\) nó có nghiệm \(x = \alpha  \pm \beta  + k2\pi \) (trong đó \(\cos \alpha  = {3 \over {\sqrt {21} }},\sin \alpha  = 2\sqrt {{1 \over 7}} \) và \(\cos \beta = {9 \over {2\sqrt {21} }}\)) đó cũng là các nghiệm của phương trình đã cho.

c) 

Chia hai vế cho \(\sqrt {13;} \) chọn \(\alpha \) thỏa mãn \(\cos \alpha  = {9 \over {\sqrt {13} }},\sin \beta  = {2 \over {\sqrt {13} }}.\) Bài toán dẫn đến phương trình \(\sin \left( {2x + \alpha } \right) = \sin \left( {{\pi  \over 2} - \alpha } \right)\)

Suy ra: \(x = {\pi  \over 4} - \alpha  + k\pi ,x = {\pi  \over 4} + k\pi \)

d) 

Phương trình được viết thành \({2 \over {\sqrt {13} }}\sin 2x + {3 \over {\sqrt {13} }}\cos 2x = \sin 14x\) hay \(\sin \left( {2x + \alpha } \right) = \sin 14x\)

Suy ra: \(x = {\pi  \over {12}} + {{k\pi } \over 6},x = {{\pi  - \alpha } \over {16}} + k{\pi  \over 8},\) trong đó \(\cos \alpha  = {2 \over {\sqrt {13} }},\sin \alpha  = {3 \over {\sqrt {13} }}.\)

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.