Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 1.62 trang 22 sách bài tập Giải tích 12 Nâng cao

Cho hai hàm số

Cho hai hàm số

    \(f(x) =  - {1 \over 4}{x^2} + x + {1 \over 4}\) và \(g(x) = \sqrt {{x^2} - x + 1} \)

a) Chứng minh rằng đồ thị (P) của hàm số f và đồ thị (C) của hàm số g tiếp xúc với nhau tại điểm A có hoành độ x = 1.                                

b) Viết phương trình tiếp tuyến chung (D) của (P) và (C) tại điểm A.

c) Chứng minh rằng (P) nằm phía dưới đường thẳng (D) và (C) nằm phía trên (D).

Giải

b) \(y = {x \over 2} + {1 \over 2}\)

c) 

Đặt \(h(x) = {x \over 2} + {1 \over 2}\) ta có

                                \(g(x) - h(x) = \sqrt {{x^2} - x + 1}  - {{x + 1} \over 2}\)

- Với \(x + 1 \le 0\) hay \(x \le  - 1\) , ta có \(g(x) - h(x) > 0\)

- Với \(x + 1 > 0\) hay \(x >  - 1\)

                                    \(g(x) - h(x) > 0\)

                                \(\eqalign{&  \Leftrightarrow g(x) > h(x)  \cr&  \Leftrightarrow {g^2}(x) > {h^2}(x)  \cr&  \Leftrightarrow 4({x^2} - x + 1) > {\left( {x + 1} \right)^2}  \cr&  \Leftrightarrow 3{\left( {x - 1} \right)^2} > 0 \cr} \)

Vậy \(g(x) - h(x) \ge 0\) với mọi \(x \in R\) và chỉ có đẳng thức x = 1.

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.