Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 24 trang 54 Sách bài tập (SBT) Toán 9 tập 2

Hãy tìm giá trị của m để phương trình có nghiệm kép.

Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm kép:

a) \(m{x^2} - 2\left( {m - 1} \right)x + 2 = 0\)

b) \(3{x^2} + \left( {m + 1} \right)x + 4 = 0\)

Giải

a) \(m{x^2} - 2\left( {m - 1} \right)x + 2 = 0\)

Phương trình có nghiệm số kép

\( \Leftrightarrow \left\{ {\matrix{
{m \ne 0} \cr
{\Delta = 0} \cr} } \right.\)

\(\eqalign{
& \Delta = {\left[ { - 2\left( {m - 1} \right)} \right]^2} - 4.m.2 \cr
& = 4\left( {{m^2} - 2m + 1} \right) - 8m \cr
& = 4\left( {{m^2} - 4m + 1} \right) \cr
& \Delta = 0 \Rightarrow 4\left( {{m^2} - 4m + 1} \right) = 0 \cr
& \Leftrightarrow {m^2} - 4m + 1 = 0 \cr
& \Delta m = {\left( { - 4} \right)^2} - 4.1.1 = 16 - 4 = 12 > 0 \cr
& \sqrt {\Delta m} = \sqrt {12} = 2\sqrt 3 \cr
& {m_1} = {{4 + 2\sqrt 3 } \over {2.1}} = 2 + \sqrt 3 \cr
& {m_2} = {{4 - 2\sqrt 3 } \over {2.1}} = 2 - \sqrt 3 \cr} \)

Vậy với \(m = 2 + \sqrt 3 \) hoặc \(m = 2 - \sqrt 3 \) thì phương trình đã cho có nghiệm số kép.

b) \(3{x^2} + \left( {m + 1} \right)x + 4 = 0\)

Phương trình có nghiệm số kép \( \Leftrightarrow \Delta  = 0\)

\(\eqalign{
& \Delta = {\left( {m + 1} \right)^2} - 4.3.4 = {m^2} + 2m + 1 - 48 = {m^2} + 2m - 47 \cr
& \Delta = 0 \Rightarrow {m^2} + 2m - 47 = 0 \cr
& \Delta m = {2^2} - 4.1\left( { - 47} \right) = 4 + 188 = 192 > 0 \cr
& \sqrt {\Delta m} = \sqrt {192} = 8\sqrt 3 \cr
& {m_1} = {{ - 2 + 8\sqrt 3 } \over {2.1}} = 4\sqrt 3 - 1 \cr
& {m_2} = {{ - 2 - 8\sqrt 3 } \over {2.1}} = - 1 - 4\sqrt 3 \cr} \)

Vậy với \(m = 4\sqrt 3  - 1\) hoặc \(m =  - 1 - 4\sqrt 3 \) thì phương trình có nghiệm số kép.

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.