Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.15 trang 87 sách bài tập Đại số và Giải tích 11 Nâng cao

Hãy xét tính tăng - giảm của các dãy số sau:

Hãy xét tính tăng - giảm của các dãy số sau:

a) Dãy số \(\left( {{a_n}} \right)\) với \({a_n} = 2{n^3} - 5n + 1\)

b) Dãy số \(\left( {{b_n}} \right)\) với \({b_n} = {3^n} - n\)

c) Dãy số \(\left( {{c_n}} \right)\) với \({c_n} = {n \over {{n^2} + 1}}\)

Giải

a) Với mỗi \(n \in N^*,\) ta có

\(\eqalign{
 {a_{n + 1}} - {a_n} &= \left[ {2{{\left( {n + 1} \right)}^3} - 5\left( {n + 1} \right) + 1} \right] \cr&- \left( {2{n^3} - 5n + 1} \right) \cr
& = 2\left[ {{{\left( {n + 1} \right)}^3} - {n^3}} \right] - 5\left( {n + 1 - n} \right) \cr
&  = 2\left[ {{{\left( {n + 1} \right)}^2} + \left( {n + 1} \right).n + {n^2}} \right] - 5 \cr
& = 6{n^2} + 6n - 3\cr& = 3.\left( {{n^2} - 1} \right) + 3{n^2} + 6n > 0\,\left( {do\,\,n \ge 1} \right) \cr} \)

Vì thế, dãy số \(\left( {{a_n}} \right)\) là một dãy số tăng.

b) Dãy số \(\left( {{b_n}} \right)\) là một dãy số tăng.

Xét hiệu \({b_{n + 1}} - {b_{n.}}\)

\(\eqalign{
& \left[ {{3^{n + 1}} - \left( {n + 1} \right)} \right] - \left[ {{3^n} - n} \right] \cr
& = {3^{n + 1}} - 1 - {3^n} \cr
& = {2.3^n} - 1 > 0\,\,\forall n \ge 1 \cr} \)

c) Dãy số \(\left( {{c_n}} \right)\) là một dãy số giảm. 

Xét hiệu \({c_{n + 1}} - {c_{n.}}\)

\({{n + 1} \over {{{\left( {n + 1} \right)}^2} + 1}} - {n \over {{n^2} + 1}} < 0\)

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Xem thêm tại đây: Bài 2. Dãy số