Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.16 trang 87 sách bài tập Đại số và Giải tích 11 Nâng cao

Hãy xét tính tăng - giảm của các dãy số sau:

Hãy xét tính tăng - giảm của các dãy số sau:

a) Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {{{3^n}} \over {{2^{n + 1}}}}\)

b) Dãy số \(\left( {{v_n}} \right)\) với \({v_n} = {{\sqrt n } \over {{2^n}}}\)

c) Dãy số \(\left( {{a_n}} \right)\) với \({u_n} = {{{3^n}} \over {{n^2}}}\)

Giải

a) Dễ thấy \({u_n} > 0\) với mọi \(n \in N^*.\) Hơn nữa ta có

\({{{u_n}} \over {{u_{n + 1}}}} = {{{3^n}} \over {{2^{n + 1}}}} \times {{{2^{n + 2}}} \over {{3^{n + 1}}}} = {2 \over 3} < 1\)

Vì thế \(\left( {{u_n}} \right)\) là một dãy số tăng.

b) Dễ thấy \({v_n} > 0\) với mọi \(n \in N^*.\) Hơn nữa, xét tỉ số \({{{v_n}} \over {{v_{n + 1}}}}\) ta có

            \({{{v_n}} \over {{v_{n + 1}}}} = {{\sqrt n } \over {{2^n}}} \times {{{2^{n + 1}}} \over {\sqrt {n + 1} }}={{2\sqrt n } \over {\sqrt {n + 1} }} > 1\,\,\,\left( {\forall n \ge 1} \right)\)

Vì thế, \(\left( {{v_n}} \right)\) là một dãy số giảm.

c) Dễ thấy \({a_n} > 0\) với mọi \(n \in N^*.\) Xét tỉ số \({{{a_n}} \over {{a_{n + 1}}}}\) ta có

            \({{{a_n}} \over {{a_{n + 1}}}} = {{{3^n}} \over {{n^2}}} \times {{{{\left( {n + 1} \right)}^2}} \over {{3^{n + 1}}}} = {1 \over 3}{\left( {1 + {1 \over n}} \right)^2}\,\,\,\)

Từ đó suy ra

\({{{a_n}} \over {{a_{n + 1}}}} < 1 \Leftrightarrow 1 + {1 \over n} < \sqrt 3  \Leftrightarrow n > {1 \over {\sqrt 3  - 1}} \Leftrightarrow n \ge 2\)

\((do\,\,n \in N^*)\)

\({{{a_n}} \over {{a_{n + 1}}}} > 1 \Leftrightarrow 1 + {1 \over n} > \sqrt 3  \Leftrightarrow n < {1 \over {\sqrt 3  - 1}} \Leftrightarrow n = 1\)

\((do\,\,n \in N^*)\)

Như vậy, ta có \({a_1} > {a_2}\) và \({a_2} < {a_3} < ... < {a_n} < {a_{n + 1}} < ...\)

Vì thế, \(\left( {{a_n}} \right)\) không là dãy số tăng, cũng không là dãy số giảm.

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 2. Dãy số