Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.52 trang 93 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho một cấp số có 7 số hạng, số hạng thứ tư bằng 6 và số hạng thứ 7 gấp 243 lần số hạng thứ hai. Hãy tìm các số hạng còn lại của cấp số nhân đó.

Cho một cấp số có 7 số hạng, số hạng thứ tư bằng 6 và số hạng thứ 7 gấp 243 lần số hạng thứ hai. Hãy tìm các số hạng còn lại của cấp số nhân đó.

Giải

Với  mỗi \(n \in \left\{ {1,2,3,4,5,6,7} \right\},\) kí hiệu \({u_n}\) là số hạng thứ n của cấp số nhân đã cho. Kí hiệu q là công bội của cấp số nhân đó.

Theo giả thiết ta có \({u_4} = 6,{u_7} = 243{u_2}\) và theo yêu cầu của bài ra ta cần tính \({u_1},{u_2},{u_3},{u_4},{u_5},{u_6},{u_7}.\)

Hiển nhiên có \({u_2} \ne 0\); vì nếu ngược lại thì phải có \({u_4} = 0\), trái với giả thiết của bài ra. Vì thế, từ giả thiết \({u_7} = 243{u_2}\), theo công thức xác định số hạng tổng quát của một cấp số nhân, ta được

                     \(243 = {{{u_7}} \over {{u_2}}} = {{{u_1}.{q^6}} \over {{u_1}.q}} = {q^5}.\) 

Suy ra \(q = 3.\) Vì thế, từ giả thiết \({u_4} = 6\) ta được \({u_1} = {{{u_4}} \over {{q^3}}} = {6 \over {{3^3}}} = {2 \over 9}.\)

Từ đó : \({u_2} = {u_1}.q = {2 \over 3},{u_3} = {u_2}.q = 2,{u_5} = {u_4}.q = 18,\)

\({u_6} = {u_5}.q = 54,{u_7} = {u_6}.q = 162.\)

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 4. Cấp số nhân