Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.54 trang 94 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho cấp số nhân

Cho cấp số nhân \(({u_n})\) có \(6{u_2} + {u_5} = 1\) và \(3{u_3} + 2{u_4} =  - 1.\) Hãy tìm số hạng đầu tổng quát của cấp số nhân đó.

Giải

Gọi q là công bội của cấp số nhân đã cho, ta có

\(\left\{ \matrix{
6{u_2} + {u_5} = 1 \hfill \cr
3{u_3} + 2{u_4} = - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{u_1}.(6q + {q^4}) = 1\,\,\,\,\,\,\,\,\,\;\;\;\,(1) \hfill \cr
{u_1}.(3{q^2} + 2{q^3}) = - 1\,\,\,\,\,(2) \hfill \cr} \right.\)

Dễ thấy, \({u_1}.q \ne 0\). Do đó cộng theo vế (1) và (2) ta được

\({q^3} + 2{q^2} + 3q + 6 = 0 \)

\(\Leftrightarrow \left( {q + 2} \right)\left( {{q^2} + 3} \right) = 0 \)

\(\Leftrightarrow q =  - 2.\)

Từ đó suy ra

                           \({u_1} = {1 \over 4}\)  và \(q =  - 2.\)

Vậy số hạng tổng quát của cấp số nhân đã cho là :

                            \({u_n} = {1 \over 4} \times {( - 2)^{n - 1}}.\)

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 4. Cấp số nhân