Câu 3.53 trang 93 sách bài tập Đại số và Giải tích 11 Nâng caoCho cấp số nhân Cho cấp số nhân \(({u_n})\) có \({u_{20}} = 8{u_{17}}\) và \({u_3} + {u_5} = 272.\) Hãy tìm số hạng đầu và công bội của cấp số nhân đó. Giải Gọi q là công bội của cấp số nhân đã cho, ta có \(\left\{ \matrix{ \( \Leftrightarrow \left\{ \matrix{ Dễ thấy, \({u_1}.q \ne 0\); vì ngược lại thì phải có \({u_3} = {u_5} = 0,\) trái với giả thiết của bài ra. Do đó, ta có \((I)\) \( \Leftrightarrow {u_1} = 13,6\) và \(q = 2.\) sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 4. Cấp số nhân
|