Câu 39 trang 106 Sách Bài Tập (SBT) Toán 9 Tập 2Chứng minh EHCD là một tứ giác nội tiếp. Trên đường tròn tâm O có một cung AB và S là điểm chính giữa của cung đó. Trên dây AB lấy hai điểm E và H. Các đường thẳng SH và SE cắt đường tròn theo thứ tự tại C và D. Chứng minh EHCD là một tứ giác nội tiếp. Giải S là điểm chính giữa của cung \(\overparen{AB}\). \( \Rightarrow \) \(\overparen{SA}\) = \(\overparen{SB}\) (1) \(\widehat {DEB} = {1 \over 2}\) (sđ \(\overparen{DCB}\) + sđ \(\overparen{AS}\)) tính chất góc có đỉnh ở bên trong đường tròn) (2) \(\widehat {DCS} = {1 \over 2}\) sđ \(\overparen{DAS}\) (tính chất góc nội tiếp) hay \(\widehat {DCS} = {1 \over 2}\) (sđ \(\overparen{DA}\) + sđ \(\overparen{SA}\)) (3) Từ (1) và (2) suy ra: \(\widehat {DEB} + \widehat {DCS} = {1 \over 2}\) (sđ \(\overparen{DCB}\) + sđ \(\overparen{AS}\) + sđ \(\overparen{DA}\) + sđ \(\overparen{SA}\) (4) Từ (1) và (4) suy ra: \(\widehat {DEB} + \widehat {DCS} = {1 \over 2}\) (sđ \(\overparen{DCB}\) + sđ \(\overparen{BS}\) + sđ \(\overparen{SA}\) + sđ \(\overparen{DA}\) \( = {{360^\circ } \over 2} = 180^\circ \) Hay \(\widehat {DEH} + \widehat {DCH} = 180^\circ \) Vậy: tứ giác EHCD nội tiếp được trong một đường tròn. Sachbaitap.com
Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 7: Tứ giác nội tiếp
|