Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 40 trang 11 Sách Bài Tập (SBT) Toán 9 Tập 1

Rút gọn các biểu thức

Rút gọn các biểu thức:

a) \({{\sqrt {63{y^3}} } \over {\sqrt {7y} }}\) (y>0);

b) \({{\sqrt {48{x^3}} } \over {\sqrt {3{x^5}} }}\) (x > 0);

c) \({{\sqrt {45m{n^2}} } \over {\sqrt {20m} }}\) (m > 0 và n > 0);

d) \({{\sqrt {16{a^4}{b^6}} } \over {\sqrt {128{a^6}{b^6}} }}\) (a < 0 và b ≠ 0).

Gợi ý làm bài

a)

\(\eqalign{
& {{\sqrt {63{y^3}} } \over {\sqrt {7y} }} = \sqrt {{{63{y^3}} \over {7y}}} = \sqrt {9{y^2}} \cr
& = \sqrt 9 .\sqrt {{y^2}} = 3.\left| y \right| = 3y (y>0)\cr} \) 

b)

\(\eqalign{
& {{\sqrt {48{x^3}} } \over {\sqrt {3{x^5}} }} = \sqrt {{{48{x^3}} \over {3{x^5}}}} \cr
& = \sqrt {{{16} \over {{x^2}}}} = {4 \over {\left| x \right|}} = {4 \over x}(x > 0) \cr} \) 

c)

\(\eqalign{
& {{\sqrt {45m{n^2}} } \over {\sqrt {20m} }} = \sqrt {{{45m{n^2}} \over {20m}}} \cr
& = \sqrt {{{9{n^2}} \over 4}} = {{\sqrt {9{n^2}} } \over {\sqrt 4 }} = {{3\left| n \right|} \over 2} = {{3n} \over 2} (m > 0 ; n > 0)\cr} \) 

d)

\(\eqalign{
& {{\sqrt {16{a^4}{b^6}} } \over {\sqrt {128{a^6}{b^6}} }} = \sqrt {{{16{a^4}{b^6}} \over {128{a^6}{b^6}}}} = \sqrt {{1 \over {8{a^2}}}} \cr
& = {{\sqrt 1 } \over {\sqrt {4{a^2}.2} }} = {1 \over {2\left| a \right|\sqrt 2 }} = {{ - 1} \over {2a\sqrt 2 }} \cr} \)

 (a < 0 và b ≠0)

Sachbaitap.net

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.