Câu 42 trang 59 Sách Bài tập Hình học 11 Nâng caoCho một mặt phẳng (P) và một điểm A nằm ngoài (P). Chứng minh rằng tất cả những đường thẳng đi qua A và song song với (P) đều nằm cùng trong một mặt phẳng (Q) song song với (P). 42. Trang 59 Sách Bài tập Hình học 11 Nâng cao Cho một mặt phẳng (P) và một điểm A nằm ngoài (P). Chứng minh rằng tất cả những đường thẳng đi qua A và song song với (P) đều nằm cùng trong một mặt phẳng (Q) song song với (P). Giải (h.95) Gọi (Q) là mặt phẳng duy nhất đi qua A và song song với (P). Giả sử a là một đường thẳng bất kì qua A và song song với (P). Ta phải chứng minh đường thẳng a nằm trên (Q). Vì a// (P) nên có đường thẳng b thuộc (P) sao cho a và b song song. Vậy mp(a, b) cắt (Q) theo giao tuyến a’ qua A và song song với b. Từ đó a trùng với a’, tức là a nằm trên (Q). sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 4: Hai mặt phẳng song song
|
Cho hình chóp S.ABCD có đáy là một tứ giác lồi. M là trung điểm của cạnh bên SA, N là trung điểm của cạnh bên SC.
Cho hình chóp S.ABCD có đáy là hình bình hành. Một mặt phẳng (P) cắt các cạnh bên SA, SB, SC, SD lần lượt tại A’, B’, C’, D’.
Cho hình chóp S.ABCD. Các điểm I, J, K lần lượt là trọng tâm các tam giác SAB, SBC, SCA.
Cho hình chóp S.ABCD đáy là hình thang (AB // CD). Điểm M thuộc cạnh BC không trùng với B và C.