Câu 43 trang 59 Sách Bài tập Hình học 11 Nâng caoCho hình chóp S.ABCD có đáy là một tứ giác lồi. M là trung điểm của cạnh bên SA, N là trung điểm của cạnh bên SC. 43. Trang 59 Sách Bài tập Hình học 11 Nâng cao Cho hình chóp S.ABCD có đáy là một tứ giác lồi. M là trung điểm của cạnh bên SA, N là trung điểm của cạnh bên SC. a) Xác định các thiết diện của hình chóp khi cắt bởi các mặt phẳng lần lượt qua M, N và song song với mp(SBD). b) Gọi I, J là giao điểm của hai mặt phẳng nói trên với AC. Chứng minh rằng \(IJ = {1 \over 2}AC\). Giải a) Giả sử (P) là mặt phẳng qua M và song song với mp(SBD) và E, F là giao điểm của (P) với các cạnh AB và AD. Khi đó, dễ thấy ME // SB, MF // SD và EF // BD. Vậy thiết diện của hình chóp khi cắt bởi mặt phẳng qua M và song song với mp(SBD) là tam giác MEF. Tương tự, thiết diện của hình chóp khi cắt bởi mặt phẳng qua N và song song với mp(SBD) là tam giác NKH với NK // SB, NH // SD, KH // BD. b) I, J lần lượt là giao điểm của hai mặt phẳng (MEF), (NKH) với AC cũng chính là giao điểm của EF, KH với AC. Do M là trung điểm của SA và ME // SB, MF // SD nên E, F lần lượt là trung điểm của AB và AD. Từ đó suy ra I là trung điểm của AO, (ở đây O là giao điểm của AC và BD). Vậy \(IO = {1 \over 2}AO\) Tương tự \({\rm{OJ}} = {1 \over 2}OC\). Vậy \({\rm{IJ}} = {1 \over 2}AC\) sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 4: Hai mặt phẳng song song
|
Cho hình chóp S.ABCD có đáy là hình bình hành. Một mặt phẳng (P) cắt các cạnh bên SA, SB, SC, SD lần lượt tại A’, B’, C’, D’.
Cho hình chóp S.ABCD. Các điểm I, J, K lần lượt là trọng tâm các tam giác SAB, SBC, SCA.
Cho hình chóp S.ABCD đáy là hình thang (AB // CD). Điểm M thuộc cạnh BC không trùng với B và C.
Cho tứ diện ABCD. Gọi I và J lần lượt là trung điểm của AB và CD. Một mặt phẳng IJ cắt các cạnh AD và BC lần lượt tại N và M.