Câu 45 trang 12 Sách bài tập Hình Học 11 nâng cao.Chứng minh rằng tâm của bốn hình vuông đó làm thành một tứ giác có hai đường chéo bằng nhau và vuông góc với nhau. 45. Trang 12 Sách bài tập Hình Học 11 nâng cao. Về phía ngoài của tứ giác lồi ABCD dựng các hình vuông có cạnh lần lượt là AB, BC, CD, DA. Chứng minh rằng tâm của bốn hình vuông đó làm thành một tứ giác có hai đường chéo bằng nhau và vuông góc với nhau. Giải Gọi \({O_1},\,{O_2},\,{O_3},\,{O_4}\) là tâm hình vuông có cạnh lần lượt là AB, BC, CD, DA và I là trung điểm của đoạn thẳng AC. Xét tam giác ABC và tam giác ACD thì theo kết quả bài tập 43 ta có \(I{O_1}{O_2}\) và \(I{O_4}{O_3}\) là những tam giác vuông cân. Từ đó, Suy ra phép quay tâm I góc quay \( - {90^o}\) biến \({O_1}\) thành \({O_2}\) và biến \({O_3}\) thành \({O_4}\). Do đó, ta có: \({O_1}{O_3} = {O_2}{O_4}\) và \({O_1}{O_3} \bot {O_2}{O_4}\) sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
Xem thêm tại đây:
Bài 4: Phép quay và phép đối xứng tâm
|
Gọi X, Y, Z lần lượt là trung điểm của các đoạn thẳng AB, BC, AC.
Cho hai tam giác ABC và A’B’C’ với đường cao lần lượt là AH và A’H’. Trong mỗi trường hợp dưới đây, hai tam giác đó có bằng nhau hay không?
Chứng minh rằng hai hình thang ấy bằng nhau nếu AB = A’B’, BC = B’C’ và CD = C’D’.
Chứng minh rằng hai tam giác bằng nhau nếu có các đường tròn nội tiếp bằng nhau, một cặp đường tròn bàng tiếp bằng nhau, đồng thời khoảng cách giữa tâm đường tròn nội tiếp và bàng tiếp của hai tam giác đó cũng bằng nhau.