Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 48 trang 12 Sách bài tập Hình Học 11 Nâng cao

Chứng minh rằng hai hình thang ấy bằng nhau nếu AB = A’B’, BC = B’C’ và CD = C’D’.

48. Trang 12 Sách bài tập Hình Học 11 Nâng cao  

Cho hình thanh ABCD vuông tại A và D, hình thang A'B'C'D' vuông góc tại A' và D'. 

Chứng minh rằng hai hình thang ấy bằng nhau nếu AB = A’B’, BC = BC và CD = CD’.

Giải 

(h.28) 

Nếu AB = CD thì kết quả là hiển nhiên.

Giả sử AB < CD, kẻ BH\(\bot\) CD, B'H' \(\bot\) C'D'

Ta có CH = CD – AB = C'D' - A'B' = C'H'.

Từ đó, suy ra hai tam giác vuông BHC và B'H'C' bằng nhau. Gọi F là phép dời hình biến tam giác BHC thành tam giác B'H'C', thì dễ thấy rằng F biến A thành A' và biến D thành D'. Do đó F biến hình thang ABCD thành hình thang A'B'C'D'. Vậy hai hình thang đó bằng nhau.

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 5: Hai hình bằng nhau