Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 63 trang 87 Sách bài tập (SBT) Toán 8 tập 1

Chứng minh rằng AC + CB < AM + MB.

Cho hai điểm A, B thuộc cùng một nửa mặt phẳng có bờ là đường thẳng xy (AB không vuông góc với xy). Gọi A’ là điểm đối xứng với A qua xy, C là giao điểm của A’B và xy. Gọi M là điểm bất kì khác C thuộc đường thẳng xy. Chứng minh rằng AC + CB < AM + MB.

Giải:                                                                           

Vì A’ đối xứng với A qua xy

⇒ xy là đường trung trực của AA’

⇒ CA’ = CA (tính chất đường trung trực)

MA = MA’ (tính chất đường trung trực)

AC + CB = A’C + CB = A’B (1)

MA + MB = MA’ + MB         (2)

Trong ∆ MA’B ta có:

A’B < A’M + MB (bất đẳng thức tam giác) (3)

Từ (1), (2) và (3) suy ra: AC + CB < AM + MB

Sachbaitap.com

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 6. Đối xứng trục