Câu 98 trang 21 Sách Bài Tập (SBT) Toán 9 Tập 1Chứng minh các đẳng thức Chứng minh các đẳng thức: a) \(\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } = \sqrt 6 \) b) \(\sqrt {{4 \over {{{\left( {2 - \sqrt 5 } \right)}^2}}}} - \sqrt {{4 \over {{{\left( {2 + \sqrt 5 } \right)}^2}}}} = 8.\) Gợi ý làm bài a) Ta có: \(4 > 3 \Rightarrow \sqrt 4 > \sqrt 3 \Rightarrow 2 > \sqrt 3 > 0\) Suy ra: \(\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } > 0\) Ta có: \({\left( {\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } } \right)^2} = 2 + \sqrt 3 + 2\sqrt {2 + \sqrt 3 } .\sqrt {2 - \sqrt 3 } + 2 - \sqrt 3 \) \( = 4 + 2\sqrt {4 - 3} = 4 + 2\sqrt 1 = 4 + 2 = 6\) \({\left( {\sqrt 6 } \right)^2} = 6\) Vì \({\left( {\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } } \right)^2} = {\left( {\sqrt 6 } \right)^2}\) nên \(\sqrt {2 + \sqrt 3 } + \sqrt {2 - \sqrt 3 } = \sqrt 6 \) b) Ta có: \(\sqrt {{4 \over {{{\left( {2 - \sqrt 5 } \right)}^2}}}} - \sqrt {{4 \over {{{\left( {2 + \sqrt 5 } \right)}^2}}}} = {{\sqrt 4 } \over {\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} }} - {{\sqrt 4 } \over {\sqrt {{{\left( {2 + \sqrt 5 } \right)}^2}} }}\) \( = {2 \over {\left| {2 - \sqrt 5 } \right|}} - {2 \over {\left| {2 + \sqrt 5 } \right|}} = {2 \over {\sqrt 5 - 2}} - {2 \over {\sqrt 5 + 2}}\) \( = {{2\left( {\sqrt 5 + 2} \right) - 2\left( {\sqrt 5 - 2} \right)} \over {\left( {\sqrt 5 + 2} \right)\left( {\sqrt 5 - 2} \right)}} = {{2\sqrt 5 + 4 - 2\sqrt {5} + 4 } \over {5 - 4}} = 8\) Vế trái bằng vế phải nên đẳng thức được chứng minh. Sachbaitap.com
Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Ôn tập chương I - Căn bậc hai. Căn bậc ba
|