Một mặt phẳng (P) thay đổi luôn chứa MN, cắt các cạnh CD và BD lần lượt tại E và F.
Cho hình chóp tứ giác S.ABCD có AD cắt BC. Hãy tìm điểm M trên cạnh SD và điểm N trên cạnh SC sao cho AM//BN.
Cho hình chóp tứ giác S.ABCD có đáy là một tứ giác lồi. Gọi M, N, E, F lần lượt là trung điểm của cạnh bên SA, SB, SC và SD.
Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật. Gọi M, N, E, F lần lượt là trọng tâm của các tam giác SAB, SCD và SDA.
Cho tứ diện ACBD. Gọi I và J lần lượt là trung điểm của BC và BD; E là một điểm thuộc cạnh AD khác với A và D.
Cho hình chóp S.ABCD có đáy là một tứ giác lồi. Gọi M và N lần lượt là trọng tâm của tam giác SAB và SAD; E là trung điểm của CB.
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M và N lần lượt là trung điểm của CD và AB.
Cho tứ diện ABCD và bốn điểm M, N, E, F lần lượt nằm trên các cạnh AB, BC, CD và DA.
Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC, N là trung điểm của OB (O là giao điểm của BD và AC).
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng.
Cho tứ diện ABCD. Gọi M là trung điểm của AB và N là một điểm thuộc cạnh CD không trùng với C và D. Mặt phẳng (P) qua MN và song song với BC.
Cho tứ diện ABCD. Hãy xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (P) trong mỗi trường hợp sau.
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của cạnh SC; (P) là mặt phẳng qua AM và song song với BD.
Cho hình chóp S.ABCD. Một mặt (P) cắt cạnh SA, SB, SC, SD lần lượt tại A’, B’, C’, D’.
Cho tứ diện ABCD. Một mặt phẳng (P) di động luôn song song với AB và CD lần lượt cắt các cạnh AC, AD, BD, BC tại M, N, E, F.