Hãy chỉ ra tất cả các phép dời hình biến hình vuông ABCD thành chính nó.
Hãy chứng tỏ rằng F và F’ là những phép đối xứng tâm và nêu rõ cách xác định tâm đối xứng của phép đó.
Chứng minh rằng khi cố định hai điểm A, B và cho điểm C thay đổi thì đường thẳng NQ luôn luôn đi qua một điểm cố định.
Về phía ngoài của hình bình hành ABCD dựng các hình vuông có cạnh lần lượt là AB, BC, CD, DA. Chứng minh rằng bốn tâm của bốn hình vuông đó là đỉnh của một hình vuông.
Chứng minh rằng tâm của bốn hình vuông đó làm thành một tứ giác có hai đường chéo bằng nhau và vuông góc với nhau.
Gọi X, Y, Z lần lượt là trung điểm của các đoạn thẳng AB, BC, AC.
Cho hai tam giác ABC và A’B’C’ với đường cao lần lượt là AH và A’H’. Trong mỗi trường hợp dưới đây, hai tam giác đó có bằng nhau hay không?
Chứng minh rằng hai hình thang ấy bằng nhau nếu AB = A’B’, BC = B’C’ và CD = C’D’.
Chứng minh rằng hai tam giác bằng nhau nếu có các đường tròn nội tiếp bằng nhau, một cặp đường tròn bàng tiếp bằng nhau, đồng thời khoảng cách giữa tâm đường tròn nội tiếp và bàng tiếp của hai tam giác đó cũng bằng nhau.
Chứng minh rằng hai tam giác vuông bằng nhau nếu có các cạnh huyền bằng nhau và đường cao ứng với cạnh huyền bằng nhau.
Chứng minh rằng nếu ba trung tuyến của tam giác ABC lần lượt bằng ba trung tuyến của tam giác A’B’C’ thì hai tam giác đó bằng nhau.
Chứng minh rằng nếu tam giác ABC bằng tam giác A’B’C’ thì hình H bằng hình H’.
Chứng minh rằng có phép vị tự biến tam giác này thành tam giác kia.
Cho hai phép vị tự V1 có tâm O1 tỉ số k1 và V2 có tâm O2 tỉ số k2. Gọi F là hợp thành của V1 và V2.
Chứng minh rằng mỗi bộ ba điểm sau đây thẳng hàng.
Nếu thay giả thiết “tiếp xúc ngoài” bằng “tiếp xúc trong” thì kết quả trên sẽ thay đổi như thế nào?
Cho hai đường tròn (O) và (O’) cắt nhau tại A và B.
Chứng minh rằng nếu hai tam giác có các cạnh tương ứng tỉ lệ thì có phép đồng dạng biến tam giác này thành tam giác kia.